当前位置 > 首页 > 公司新闻 > 公司新闻 > 膜结构的计算

膜结构的计算

文章出处:苏州弘润景观膜结构工程有限公司人气:发表时间:2014-06-17 22:50:59
膜结构的计算 
四)风振响应分析   膜结构质量很轻且刚度较弱,因此非线性风振响应分析将是其设计计算中的又一个关键问题、难点问题。本文应用随机模拟法的思路,发展建立了一种可以适用于大型膜结构非线性风振响应分析的方法。该方法的思路是,首先将膜结构离散化,根据风的概率统计特性,将风速模拟成时间的函数,即人工仿真生成风速时程。然后利用风的空间相关特性,将在结构各个结点处生成的不相关的风速转换成空间相关的风速场。应用Morison公式将风速转变为风压,合理地确定风荷载,并作用于相应的单元结点上,利用有限元法在时间域内直接求解运动微分方程并求得结构的响应。在推导有限元基本方程的迭代公式时,在每一时间步长中考虑了结构的非线性特性、风与结构相互耦合作用的影响、风压分布系数(体型系数)等等因素。由响应值中求得所要的统计信息,如结构振动的位移、速度、加速度的均值和均方差,以及相应的功率谱,并从中获得膜结构的风振响应特性。
 

 对工程结构设计计算来说,风作用的大小一般以风压来表示,本文采用Morison公式来计算风荷载,它可更合理地反映物体的表面压力。当不考虑风与结构耦合作用时的风荷载公式为:                                                                                                                         (3)
     式中第一项与第二项之和是加速流中静止的弹性结构所受到的总惯性力,总称为惯性项。式中 是空气质量密度,A为面积,H为膜厚度, 为风压分布系数, 为风速,包含了平均风速和脉动风速。可以看出,Morison公式比一般公式增加了开头的两项,如果忽略前两项,则即为我们通常所说的风荷载公式。如果考虑风与结构的耦合作用,则上式变为:                                                                                                                         (4)
                              分别为结构振动的位移、速度和加速度,而结构的运动方程为:                                                                                                         (5)

 文中质量矩阵M采用集中质量矩阵,阻尼矩阵C采用Rayleigh阻尼,非线性的刚度矩阵K如前文所述,而荷载项P采用式(4)。显然,这是一个复杂的非线性动力方程组,不仅刚度矩阵是随位移变化而变化的,而且荷载项里还包含了结构的加速度和速度项。为此本文利用Newmark法和Newton-Raphson迭代法的思想,推导了膜结构在风荷载作用下,考虑风与结构耦合作用的非线性动力增量平衡方程,最终整理得:                                                                   (6)
 (五)裁剪设计计算
   膜结构的曲面经初始形态设计得到,一般为复杂不规则、不可展的空间曲面形式,而且是由有限元的离散节点构成。因此,这里存在一个如何将平面的膜材料拼接成空间曲面的裁剪设计问题。裁剪设计是膜结构设计中的一个关键问题。裁剪下料图的准确与否直接关系到施工安装后的平整度,也就是膜结构的静、动力计算的前提—初始形态设计得到的初始状态与实际施工安装后是否吻合,进而影响静动力的计算结果。   本文发展建立了一种应用广义泛函变分取极值,得到膜结构曲面上的测地线,然后依据测地线计算裁剪线从而生成裁剪图的方法。具体方法详见文献[1],其过程一般如下: 1、由初始形态设计程序求得膜结构的空间曲面离散点坐标。 2、根据建筑和结构上的要求确定测地线控制点的位置,计算出测地线轨迹坐标。这里建筑上的要求指的一是测地线的布置要美观;二是相邻两条测地线间距离要控制在膜材幅宽的范围内。而结构上的要求是要尽量避免结构在受荷时拉力大的方向与测地线方向垂直。 3、依据测地线求出裁剪线。 4、生成裁剪图。当然,最终的施工下料图还要考虑绳边索套,焊缝宽度及初始预张力、温度应力、徐变等因素的影响。
 

此文关键字:膜结构的计算